2,544 research outputs found

    Spline-based self-controlled case series method

    Get PDF
    The self-controlled case series (SCCS) method is an alternative to study designs such as cohort and case control methods and is used to investigate potential associations between the timing of vaccine or other drug exposures and adverse events. It requires information only on cases, individuals who have experienced the adverse event at least once, and automatically controls all fixed confounding variables that could modify the true association between exposure and adverse event. Time-varying confounders such as age, on the other hand, are not automatically controlled and must be allowed for explicitly. The original SCCS method used step functions to represent risk periods (windows of exposed time) and age effects. Hence, exposure risk periods and/or age groups have to be prespecified a priori, but a poor choice of group boundaries may lead to biased estimates. In this paper, we propose a nonparametric SCCS method in which both age and exposure effects are represented by spline functions at the same time. To avoid a numerical integration of the product of these two spline functions in the likelihood function of the SCCS method, we defined the first, second, and third integrals of I-splines based on the definition of integrals of M-splines. Simulation studies showed that the new method performs well. This new method is applied to data on pediatric vaccines

    Self-controlled case series with multiple event types

    Get PDF
    Self-controlled case series methods for events that may be classified as one of several types are described. When the event is non-recurrent, the different types correspond to competing risks. It is shown that, under circumstances that are likely to arise in practical applications, the SCCS multi-type likelihood reduces to the product of the type-specific likelihoods. For recurrent events, this applies whether or not the marginal type-specific counts are dependent. As for the standard SCCS method, a rare disease assumption is required for non-recurrent events. Several forms of this assumption are investigated by simulation. The methods are applied to data on MMR vaccine and convulsions (febrile and non-febrile), and to data on thiazolidinediones and fractures (at different sites)

    Investigating the assumptions of the self-controlled case series method.

    Get PDF
    We describe some simple techniques for investigating two key assumptions of the self-controlled case series (SCCS) method, namely that events do not influence subsequent exposures, and that events do not influence the length of observation periods. For each assumption we propose some simple tests based on the standard SCCS model, along with associated graphical displays. The methods also enable the user to investigate the robustness of the results obtained using the standard SCCS model to failure of assumptions. The proposed methods are investigated by simulations, and applied to data on measles, mumps and rubella vaccine, and antipsychotics

    Proton pump inhibitors and the risk of pneumonia: A comparison of cohort and self-controlled case series designs

    Get PDF
    Background: To compare the results of a new-user cohort study design and the self-controlled case series (SCCS) design using the risk of hospitalisation for pneumonia in those dispensed proton pump inhibitors compared to those unexposed as a case study. Methods: The Australian Government Department of Veterans’ Affairs administrative claims database was used. Exposure to proton pump inhibitors and hospitalisations for pneumonia were identified over a 4 year study period 01 Jul 2007 -30 Jun 2011. The same inclusion and exclusion criteria were applied to both studies, however, the SCCS study included subjects with a least one hospitalisation for pneumonia. Results: There were 105,467 subjects included in the cohort study and 6775 in the SCCS. Both studies showed an increased risk of hospitalisations for pneumonia in the three defined risk periods following initiation of proton pump inhibitors compared to baseline. With the highest risk in the first 1 to 7 days (Cohort RR, 3.24; 95% CI (2.50, 4.19): SCCS: RR, 3.07; 95% CI (2.69, 3.50)). Conclusions: This study has shown that the self-controlled case series method produces similar risk estimates to a new-users cohort study design when applied to the association of proton pump inhibitors and pneumonia. Exposure to a proton pump inhibitor increases the likelihood of being admitted to hospital for pneumonia, with the risk highest in the first week of treatment.Emmae N Ramsay, Nicole L Pratt, Philip Ryan and Elizabeth E Roughea

    Self-controlled case series methods: an alternative to standard epidemiological study designs

    Get PDF
    The self controlled case series (SCCS) method is an epidemiological study design for which individuals act as their own control—ie, comparisons are made within individuals. Hence, only individuals who have experienced an event are included and all time invariant confounding is eliminated. The temporal association between a transient exposure and an event is estimated. SCCS was originally developed for evaluation of vaccine safety, but has since been applied in a range of settings where exact information on the size of the population at risk is lacking or identification of an appropriate comparison group is difficult—eg, for studies of adverse effects of drug treatments. We provide an overview of the SCCS method, with examples of its use, discuss limitations, assumptions, and potential biases that can arise where assumptions are not met, and provide solutions and examples of good practice

    Flexible modelling of vaccine effect in self-controlled case series models

    Get PDF
    The self-controlled case-series method (SCCS), commonly used to investigate the safety of vaccines, requires information on cases only and automatically controls all age-independent multiplicative confounders, while allowing for an age dependent baseline incidence. Currently the SCCS method represents the time-varying exposures using step functions with pre-determined cut-points. A less prescriptive approach may be beneficial when the shape of the relative risk function associated with exposure is not known a priori, especially when exposure effects can be long-lasting. We therefore propose to model exposure effects using flexible smooth functions. Specifically, we used a linear combination of cubic M-splines which, in addition to giving plausible shapes, avoids the integral in the log-likelihood function of the SCCS model. The methods, though developed specifically for vaccines, are applicable more widely. Simulations showed that the new approach generally performs better than the step function method. We applied the new method to two data sets, on febrile convulsion and exposure to MMR vaccine, and on fractures and thiazolidinedione use
    • 

    corecore